
	
	

Traces, tracks, trails, and paths: An Exploration of How We Approach Design	Page	-	1	

Traces,	tracks,	trails,	and	paths:	An	Exploration	of	How	We	
Approach	Software	Design	
REBECCA	WIRFS-BROCK,	Wirfs-Brock	Associates	

Pattern	authors	intentionally	create	waypoints—points	of	interests	along	a	design	trail	they	hope	others	can	traverse.	While	designers	may	
read	others’	design	advice—be	 it	patterns	or	stack	overflow	replies,	 the	heuristics	 they’ve	personally	discovered	are	equally	 important.	
Patterns	are	just	a	small	part	of	a	much	larger	body	of	our	design	know	how.	Heuristics,	like	patterns,	can	be	expressed	at	various	levels.	
Some	are	small,	simple	acts.	Others	are	bigger	steps,	taken	at	the	beginning	of	a	design	journey.	This	essay	explores	ways	we	can	grow	as	
designers	by	becoming	more	aware	of	our	heuristics,	acknowledging	the	 inherent	uncertainty	in	the	design	process,	and	learning	better	
ways	to	articulate	and	share	our	heuristics	with	each	other.	

Categories	 and	 Subject	 Descriptors:	 •	Software	 and	 its	 engineering~Software	 design	 engineering	 •	Software	 and	 its	
engineering~Software	design	tradeoffs	•	Software	and	its	engineering~Design	patterns	

ACM	Reference	Format:	

Wirfs-Brock,	 R.	 Traces,	 tracks,	 trails,	 and	 paths:	 An	 Exploration	 of	 How	 We	 Approach	 Software	 Design,	 25th	 Conference	 on	 Pattern	
Languages	of	Programming	(PLoP),	PLoP	2018,	Oct	24-26	2018,	21	pages.	

1. INTRODUCTION	

If	I	were	to	be	brutally	honest	about	the	nature	of	software	design,	I	would	give	up	on	any	notion	of	certainty.	
The	more	I	know	about	software	and	the	world	it	is	part	of,	the	more	cautious	I	become	about	making	absolute	
statements	about	either.	Software	design	 is	 full	of	unexpected	complexities	and	continual	surprises.	 I	cannot	
predict	which	contextual	details	will	suddenly	become	important.	Small	details	can	loom	large	and	undo	even	
the	best	design	intentions.	

Because	I	acknowledge	this	uncertainty,	I	seek	out	other	designers’	stories.	I	want	to	learn	about	the	ugly,	
confusing	 aspects	 of	 design	 that	 are	 rarely	 written	 about.	 I	 want	 to	 incorporate	 others’	 insights	 into	 my	
growing	understanding	of	the	nature	of	software	design.	I	want	to	learn	what	heuristics	they	use	to	solve	their	
design	problems	and	see	where	they	clash	with	or	complement	my	own.	

As	 a	 designer	 I	 often	 encounter	 conflicting	 goals,	 dynamically	 changing	 context,	 and	 shifting	 degrees	 of	
certainty	about	those	heuristics	I	know	and	cherish.	Once	in	a	while	this	makes	this	makes	me	pause	to	reflect	
and	 readjust	my	 thinking.	 But	more	 often,	 I	 quickly	 take	 stock	 of	 the	 situation	 and	move	 on,	 perhaps	 only	
tweaking	 my	 design	 a	 little,	 without	 much	 exploration	 or	 thought.	 I	 don’t	 spend	 much	 time	 consciously	
rethinking	and	rearranging	my	worldview.	

I’m	hoping	to	change	that	 just	a	 little	by	giving	myself	some	space	and	time	to	reflect	on	how	I	approach	
design	 and	 share	 some	ways	we	 as	 designers	might	 grow,	 alter,	 articulate,	 and	 better	 share	 our	 heuristics.	
There	is	much	to	learn	about	design	from	the	stories	we	tell	and	from	the	questions	we	ask	of	each	other.		

2. BACKGROUND		

A	software	designer’s	personal	toolkit	likely	includes	an	awareness	of	some	hardcore	technical	design	patterns	
(and	how	to	shape	and	adapt	and	refine	them).	It	also	includes	heuristics	for	how	to	approach	the	current	task	
at	hand.	Our	heuristics	have	been	imparted	to	us	through	code	and	conversations,	as	much	as	anything.	While	
we	 may	 read	 others’	 design	 advice—be	 it	 from	 patterns	 or	 stack	 overflow	 replies,	 the	 heuristics	 we’ve	
personally	discovered	on	our	own	design	journey	may	be	even	more	important.	
__
Permission	to	make	digital	or	hard	copies	of	all	or	part	of	 this	work	for	personal	or	classroom	use	 is	granted	without	 fee	provided	that	
copies	are	not	made	or	distributed	for	profit	or	commercial	advantage	and	that	copies	bear	this	notice	and	the	full	citation	on	the	first	page.	
To	copy	otherwise,	to	republish,	to	post	on	servers	or	to	redistribute	to	lists,	requires	prior	specific	permission.	A	preliminary	version	of	
this	paper	will	be	presented	in	a	writers'	workshop	at	the	25th	Conference	on	Pattern	Languages	of	Programs	(PLoP).	PLoP'18,	October	
24-26,	Portland,	OR,	USA.	Copyright	2018	is	held	by	the	author(s).	HILLSIDE	978-1-941652-06-0	
 	

	
	

Traces, tracks, trails, and paths: An Exploration of How We Approach Design	Page	-	2	

In	Discussion	 of	 the	Method:	 Conducting	 the	 Engineer’s	 approach	 to	 problem	 solving	 [Koen],	Billy	 Vaughn	
Koen	defines	a	heuristic	as,	“anything	that	provides	a	plausible	aid	or	direction	in	the	solution	of	a	problem	but	
is	in	the	final	analysis	unjustified,	incapable	of	justification,	and	potentially	fallible.”	If	you	desire	to	create	or	
change	a	system	(whether	social,	political,	physical,	software,	or	otherwise),	opting	for	what	you	consider	to	be	
the	best	available	heuristics	to	apply	as	you	balance	conflicting	or	poorly	understood	criteria	for	success,	then	
you	are	solving	an	engineering	problem.	Rarely	are	such	problems	well	defined.	Instead,	we	problem	solvers	
determine	what	the	actual	problem	is	based	on	diffuse,	changing	requirements.	And	to	solve	that	problem,	we	
successively	 apply	heuristics	based	on	our	 imperfect	 knowledge	of	 both	 the	 current	 situation	as	well	 as	 the	
outcome	of	taking	any	specific	action.	Heuristics	offer	plausible	approaches,	not	infallible	ones.	

When	 we	 software	 designers	 choose	 an	 approach	 to	 solve	 a	 current	 problem,	 most	 of	 the	 time	 we	 are	
satisficing—finding	a	satisfactory	approach,	not	actively	judging	what’s	best	or	optimal.	If	a	heuristic	seems	to	
fit	 the	situation,	 I	 try	 it.	Given	what	 I	know,	what	 I	believe	 to	be	salient	at	 the	moment,	what	 I	 intuit,	what	 I	
value,	 and	what	 constraints	 I	have,	 I	 choose	what	 I	 think	are	 reasonable	heuristics	 (at	whatever	granularity	
they	are).	There	is	no	guarantee	that	doing	so	actually	moves	me	closer	to	my	design	goal.	Consequently	I	need	
to	 check	my	 emerging	 solution	 for	 flaws	 or	weaknesses.	 If	 I	 spot	 any,	 I	 take	 corrective	 action.	 Sometimes	 I	
backtrack	a	 long	way,	unwinding	what	 I’ve	already	done	 in	order	 to	 try	out	 an	alternative	design	approach.	
More	often	than	not,	I	only	slightly	backtrack,	having	already	committed	myself	to	a	path	that	I	want	to	follow.	
In	 that	 case	 I’m	not	willing	 to	 invest	 in	 finding	 a	 totally	 new	 approach.	And	 sometimes,	 even	 though	 things	
don’t	seem	to	be	working	out,	I	plow	ahead,	even	though	I	feel	uneasy,	hoping	I’ll	be	on	firmer	footing	soon.	I	
never	 proceed	 in	 a	 straight	 line	 from	 problem	 understanding	 to	 solution	 design	 in	 a	 series	 of	 even	 steps.	
Instead,	I	move	haltingly	forward	to	a	more	nuanced	understanding	of	what	aspects	of	my	emerging	solution	
are	important.		

Most	of	the	time,	I	work	on	autopilot.	I	make	many	decisions	and	take	many	design	actions,	using	heuristics	
at	whatever	 level	 I	 need.	These	heuristics	have	been	deeply	 embedded	 into	my	design	 gestalt.	 I	 apply	 them	
without	any	conscious	thought.	Only	when	I	bump	up	against	a	design	challenge	where	I	don’t	know	what	to	do	
next—when	 there	 is	 some	 tension	 or	 nagging	 uncertainty	 or	 unfamiliar	 territory—do	 I	 actively	 take	 a	 step	
back	from	what	I’m	doing	to	look	outside	of	myself	for	others’	wisdom.	It	is	when	I	pop	out	of	this	“unconscious	
action”	mode	to	actively	search	for	a	design	heuristic	that	I	want	to	be	able	to	quickly	assess	the	utility	of	any	I	
might	find.	

I	 assert	 that	 a	 well-written	 pattern	 is	 a	 particularly	 nicely	 packaged	 form	 of	 heuristic.	 Patterns	 are	
particularly	useful	as	they	are	drawn	from	direct	experience	and	include	handy	information	for	the	discerning	
designer—most	 notably	 the	 context	 where	 the	 pattern	 is	 useful	 as	 well	 as	 tradeoffs	 and	 consequences	 of	
applying	it.		

Although	 I	 like	patterns,	 the	vast	majority	of	 software	design	heuristics	have	not	been	written	 in	pattern	
form.	Nor	do	I	expect	them	to	be.	Not	every	useful	heuristic	is	a	pattern.	I	seek	out	those	other	heuristics,	too.	I	
am	on	the	lookout	for	useful	heuristics	wherever	I	am	engaged	in	designing	or	learning	about	software	design	
(for	 example,	 when	 thinking	 about	 how	 to	 solve	 a	 current	 problem	 that	 is	 unfamiliar,	 when	 reading	 code,	
reading	blogs,	when	playing	with	a	new	framework,	when	searching	for	online	advice	and	recommendations,	
when	attending	conference	talks,	talking	with	friends,	going	to	meetups,	…).	I	keep	adding	to	my	bag	of	tricks.	I	
tweak	and	refine	heuristics	through	experience.	Rearranging	and	growing	my	heuristics	toolkit	is	ongoing	and	
not	in	anyway	systematic.	

3. METAPHORS	 FOR	 UNDERSTANDING	 THE	 CERTAINTY	 AND	 UTILITY	 OF	 DIFFERENT	 SOFTWARE	
HEURISTICS	WE	MIGHT	PICK	UP	AND	USE	

Could	I	be	a	better	software	designer	if	I	made	finer	distinctions	between	heuristics?	There	are	those	I	know	
deeply	and	have	 learned	 from	others.	There	are	 those	 I	discovered	on	my	own.	There	are	heuristics	 I	 know	
intimately—however	I	came	to	know	them—that	I	have	 lovingly	polished	through	experience.	And	there	are	
those	shiny	new	heuristics	I	hear	or	read	about.	

So	what	are	some	ways	to	understand	the	soundness	and	utility	of	heuristics	we	find?	Robert	Moor,	in	his	
book,	On	Trails	[Moor],	suggests	that	we	untangle	the	various	meanings	and	distinctions	between	trails,	traces,	
tracks,	ways,	roads,	and	paths	in	order	to	understand	how	trails	came	to	be	and	continue	to	evolve.		
	

	
	

Traces, tracks, trails, and paths: An Exploration of How We Approach Design	Page	-	3	

“The words we English speakers use to describe lines of movement—trails, traces, tracks,
ways, roads, paths—have grown entangled over the years…But to better understand how trails
function it helps to momentarily tease them apart. The connotations of trail and path, for
example, differ slightly…the key difference between a trail and a path is directional: paths
extend forward, whereas trails extend backward. (The importance of this distinction becomes
paramount when you consider the prospect of lying down in the path of a charging elephant
versus lying down in its trail). Paths are perceived as being more civilized in part because of
their resemblance to other urban architectural projects: They are lines projected forward in
space by the intellect and constructed with those noble appendages, the hands. By contrast,
trails tend to form in reverse, messily, from the passage of dirty feet.”
 —Robert Moor, On Trails: An Exploration

Are	published	software	design	patterns	more	like	paths	or	trails?	How	certain	and	civilized	and	planned	are	

these	patterns?	
I	 see	 a	 resemblance	 between	 paths	 and	 published	 pattern	 collections.	 Published	 patterns	 collections	 are	

neatly	laid	out,	organized,	and	explained.	They	typically	include	some	sort	of	map,	suggesting	connections	and	
arcs	of	expected	usage.	They	appear	systematically	arranged.	While	individual	patterns	may	have	been	mined	
from	their	authors’	messy	design	experiences,	the	way	they	are	presented	hides	any	of	that	uncertainty.	Those	
authors	seem	to	know	their	stuff!	

Recently	 I’ve	 learned	 that	 some	 pattern	 authors	 were	 not	 so	 certain	 as	 their	 writing	 suggests.	 Ralph	
Johnson,	in	his	Sugarloaf	PLoP	2014	keynote	[John]	said	that	when	they	wrote	Design	Patterns	[GHJV],	he	and	
his	 co-authors	 found	 the	 creational,	 behavioral,	 and	 structural	 categories	 for	 their	 pattern	 collection	 rather	
dubious.	They	went	ahead	with	them	anyways,	for	lack	of	any	better	organizing	scheme.	In	his	keynote	Johnson	
proposed	 a	 better	 way	 to	 categorize	 the	 GoF	 patterns	 (core,	 creational,	 and	 peripheral),	 stating	 that	 some	
patterns	were	definitely	less	useful,	or	peripheral	than	others		

Likewise,	 Eric	 Evans	 in	 several	 talks	 [Evan12,	 Evan15]	 suggests	 that	 the	most	 important	 patterns	 in	 his	
collection	were	the	Strategic	Patterns.	 If	you	 look	at	how	the	patterns	 in	his	book	are	 laid	out	(see	Figure	1)	
there	are	really	two	groupings	or	patterns	collections—those	concerned	with	design	details	for	object	designs	
(e.g.	Tactical	Design	Patterns)	and	 those	 for	organizing	and	understanding	 the	domains	 in	complex	software	
systems	 (Strategic	 Design	 Patterns).	 Evans	 believes	 that	 while	 the	 Tactical	 Patterns	 are	 useful	 for	 object-
oriented	programming,	they	aren’t	nearly	as	important	as	the	Strategic	Patterns.	He	regrets	that	the	Strategic	
Patterns	were	in	the	latter	part	of	his	lengthy	book,	as	some	readers	never	get	that	far.	He	also	points	out	that	a	
missing	 pattern,	 Domain	 Events,	which	was	 only	 hinted	 at	 in	 his	 book,	 has	 become	 increasingly	 important,	
especially	 with	 the	 increased	 use	 of	 CQRS	 [Daha]	 and	 Event-Sourced	 architectures	 to	 implement	 Domain	
Driven	Design	models.	

	

	
	

Traces, tracks, trails, and paths: An Exploration of How We Approach Design	Page	-	4	

	
Figure	1.	The	Domain-Driven	Design	Patterns	are	really	two	collections	in	one	book:	Strategic	and	Tactical	Design	Patterns	

In	hindsight,	 the	presentation	of	 these	pattern	collections	seems	more	 tentatively	 than	carefully	planned.	
Had	the	authors	taken	time	to	study	how	others	actually	used	their	patterns,	would	they	have	designed	better	
pathways?	Or	is	this	something	they	can	see	only	when	looking	back	on	their	work?	

Perhaps	they	were	really	blazing	trails	instead	of	constructing	pathways.	
We	can	also	draw	useful	analogies	between	patterns	collections	and	trails.	Trails	aren’t	planned	and	built;	

they	 emerge	over	 time.	What	 exactly	 is	 it	 that	makes	 a	 trail	 a	 trail?	Richard	 Irving	Dodge,	 in	his	1876	book	
Plains	of	the	Great	West,	drawing	from	his	experience	as	a	tracker,	defined	a	trail	as	a	string	of	“sign”	that	can	
be	reliably	 followed	 [Moor].	 “Sign”	refers	 to	 the	various	marks	 left	behind	by	an	animal	 in	 its	passing—scat,	
broken	 branches,	 spoor,	 etc.	 A	 track	 is	 evidence;	 a	mark	 or	 a	 series	 of	marks	 or	 “sign”	 that	 something	 has	
passed	through.	A	track	only	becomes	a	trail	when	a	series	of	“sign”	can	be	followed.	“Sign”,	according	to	Moor,	
can	be	physical,	chemical,	electronic,	or	theoretical.	An	animal	might	leave	“sign”	but	unless	it	can	be	tracked	
reliably,	a	series	of	“sign”	doesn’t	automatically	make	it	a	trail.	

Trails	are	trails	because	they	can	be	trailed.	Moor	claims	that,	“something	miraculous	happens	when	a	trail	
is	trailed.	The	inert	line	is	transformed	into	a	legible	sign	system,	which	allows	animals	to	lead	one	another,	as	
if	telepathically,	across	long	distances.”	

When	patterns	 authors	write	 about	what	 they’ve	 found	 to	be	used	 in	practice,	 the	patterns	 they	present	
have	 the	potential	 to	be	 trails	 that	others	eagerly	 follow.	But	 this	potential	only	exists	 if	 the	authors	explain	
how	to	move	from	one	“sign”/	pattern	/	heuristic	to	the	next.	I’ve	seen	scant	evidence	of	this.	Patterns	maps	in	
books	typically	don’t	describe	movement	through	the	patterns.	Instead,	like	hand-sketched	maps,	they	suggest	
only	 vague	 connections.	 Individual	 patterns	 seem	 more	 like	 clumps	 of	 potentially	 interesting	 waypoints	
(patterns),	loosely	linked	or	roughly	categorized.	Most	authors	stop	short	of	laying	out	waypoints	or	“sign”	in	
any	specific	order	to	follow.	

On	the	other	hand,	pattern	languages,	unlike	pattern	collections,	attempt	to	define	one	or	more	sequences	
of	use.	Once	you	add	potential	sequences,	voila!	pattern	languages	seem	much	more	like	trails.	

	I	 know	 of	 few	 examples	 of	 published	 software	 design	 pattern	 languages.	 Object-oriented	 Reengineering	
Patterns	by	Serge	Demeyer,	Stéphane	Ducasse,	and	Oscar	Nierstrasz	[Dem]	is	a	notable	one.	Each	chapter	starts	
with	a	pattern	map	illustrating	potential	sequences	through	the	patterns	in	the	chapter	based	on	actions	(see	
Figure	 2	 for	 the	 pattern	 map	 for	 Chapter	 4).	 These	 maps	 illustrate	 small	 trails	 with	 branches,	 loops,	 and	
options.	 For	 example,	 to	 gain	 an	 initial	 understanding	 of	 a	 design,	 you	 can	 start	with	 either	 a	 top	 down	 or	
bottom	up	approach	and	proceed	until	you	have	enough	understanding	to	move	on	to	your	next	re-engineering	
task.	

	
	

Traces, tracks, trails, and paths: An Exploration of How We Approach Design	Page	-	5	

	
	

Figure	2.	Each	chapter	in	Object-Oriented	Reengineering	Patterns	is	a	small	language	

Unlike	 physical	 trails,	 where	we	 are	 guided	 to	move	 in	 a	 singular	 direction,	 software	 pattern	 languages	
seem	more	loopy	and	fragmented.	But	unlike	a	physical	trail	where	we	are	constrained	by	the	physical	terrain,	
software	designers	can	skip	over	any	pattern	they	don’t	find	useful	or	go	“off	trail”	at	any	point	to	pick	up	and	
apply	a	useful	design	heuristic,	wherever	they	find	it.	 It’s	hard	to	skip	over	a	part	of	a	physical	trail.	 It’s	only	
possible	 when	 there’s	 a	 switchback	 that	 you	 can	 cut	 through	 or	 a	 branch.	 But	 it	 is	 usually	 those	 optional	
stretches	 away	 from	 the	main	 trail	 and	 then	back	 again	 that	 lead	 to	 something	 really	 interesting.	 You	don’t	
want	to	miss	that	waterfall	simply	because	it	is	an	extra	half	mile	out	of	the	way.	

We	software	designers	often	invent	(design?	hack	out?)	our	own	tracks.	If	we	don’t	know	what	to	do	next,	
we	become	way	finders,	experimenting	and	looking	around	for	actions	that	will	propel	our	design	forward.	To	
me	 that	 doesn’t	 feel	 like	 bushwhacking;	 it	 just	 seems	 expedient.	 Software	 designers	 aren’t	 constrained	 to	
follow	 a	 patterns	 trail	 exactly	 as	 any	 pattern	 language	 author	 suggests	 anymore	 than	 fluent	 speakers	 are	
constrained	to	express	their	thoughts	using	only	the	formal	grammar	defined	for	their	language.	

So	 this	 is	 where	 the	 pattern	 languages	 as	 trails	metaphor	 breaks	 down.	 Software	 design	 doesn’t	 simply	
proceed	 from	one	known	waypoint	 to	 the	next.	 It	 can	often	be	more	 complicated.	But	 sometimes	 it	 is	much	
simpler.	Sometimes	we	are	certain	of	what	to	do	next	without	consciously	following	any	trail	or	path	or	track	at	
all	other	than	the	one	we	are	currently	on.	In	that	case,	our	software	and	its	design	is	so	familiar	to	us	that	we	
become	efficient	at	just	moving	through	that	terrain	without	much	thought.	We’re	not	searching	for	heuristics	
so	much	as	taking	the	next	(to	us,	anyway)	obvious	step.	

4. THE	ROLES	OF	THE	TRAILBLAZERS,	TRAVELLERS,	AND	STEWARDS	

“The soul of a trail—its trail-ness—is not bound up in dirt and rocks; it is immaterial,
evanescent, as fluid as air. The essence lies in its function: how it continuously evolves to
serve the needs of its users.” —Robert Moor

Trails	 emerge;	 living	 useful	 trails	 evolve.	 Wild,	 ancient	 trails	 started	 as	 traces—marks,	 objects,	 or	 other	
indication	 of	 the	 existence	 or	 passing	 of	 someone	 or	 something.	 Because	 others	 followed,	 some	 traces	 over	
time	become	tracks—rough	ways	typically	beaten	into	existence	through	repeated	use	rather	than	consciously	
constructed.	 Tracks	 became	 trails	 only	when	 they	 become	 followable.	 And	 then,	with	 enough	 following	 and	
time	 and	 adaptation	 a	 trail	 becomes	 “alive”	 with	 an	 evolving	 purpose—it	 changes	 and	 is	 adapted	 by	 its	
travellers.	But	this	progression	isn’t	 inevitable.	Traces	peter	out.	Tracks	fade	from	disuse.	Trails	become	lost,	
abandoned,	or	fall	into	disrepair.	Still,	each	at	one	point	in	time	had	utility	and	served	a	purpose.	

Like	 trails,	 through	many	 uses	 the	 rough	 edges	 of	 our	 software	 patterns	 get	 smoothed	 off.	 If	 they	 seem	
polished	enough,	and	we	have	enough	of	them	that	are	related	to	each	other,	we	who	feel	compelled	to	write	
them	 down	 create	 patterns	 collections…hoping	 others	 find	 them	 useful.	 But	 unlike	 physical	 trails,	 which	
change	with	use	and	with	the	weather	and	the	season,	our	software	patterns,	patterns	collections,	and	patterns	
languages	aren’t	so	easily	changed.	Our	software	design	patterns	are	representations—like	maps	of	a	trail;	they	

Chapter 4: Initial
Understanding Patterns

Identify
problems

Understand?

Top Down

Pattern 4.1:
Analyze the
Persistent Data

Pattern 4.2
Speculate about Design

Bottom up

Pattern 4:3
Study the
Exceptional Entities

Recover
design

Recover
database

	
	

Traces, tracks, trails, and paths: An Exploration of How We Approach Design	Page	-	6	

aren’t	the	trail	itself.	Consequently,	there	isn’t	a	direct	feedback	loop	between	recorded	patterns	and	how	their	
users	have	changed	them.	

If	we	were	careful	enough	when	we	wrote	down	our	patterns	we	also	included	the	context	where	we	found	
them	to	be	useful.	But	the	context	of	those	who	want	to	follow	our	trails	is	constantly	changing	with	the	type	of	
software	being	designed,	 the	constraints	of	 the	 larger	ecosystem	it	 is	part	of,	and	with	the	skills	and	tools	at	
hand.	 Therein	 lies	 a	 big	 problem	 for	 sustaining	 the	 liveliness	 of	 software	 patterns.	 If	 we	 want	 written	
descriptions	to	continue	to	guide	others,	we	need	to	find	ways	to	refresh	them.	And	that	starts	by	creating	vital	
feedback	loops	between	software	pattern	users	and	their	various	trail	keepers	or	stewards.		
	

“We tend to glorify trailblazers…but followers play an equally important role in creating a
trail. They shave off unnecessary bends and brush away obstructions; improving the trail with
each trip.” —Robert Moor

	
We	in	the	software	patterns	community	seem	to	glorify	trailblazing	patterns	authors.	A	trailblazer	formally	

identifies	a	trail	by	creating	marks	or	“blazes”	that	others	can	follow.	Most	likely,	a	trail	existed	before	it	was	
“blazed.”	But	the	trailblazer,	who	made	the	marks,	is	credited	with	creating	it.	But	patterns	authors	claim	to	not	
have	 created	 their	 patterns	 so	much	 as	 to	 have	discovered	 their	 existence	 and	documented	 them.	We	 are	 a	
humble	 lot.	But	when	pattern	 authors	mark	what	 they	 see,	 they	make	 it	 easier	 for	 others	 to	 follow.	Pattern	
authors	also	do	a	great	service	in	pointing	out	the	features	of	the	terrain,	e.g.	the	design	context	and	forces,	as	
other	 inexperienced	 designers	may	 not	 consciously	 think	 of	 them	 otherwise.	 Indeed,	 this,	 too,	 is	 a	 form	 of	
trailblazing.	

Pattern	newcomers	are	often	confounded	when	solutions	 to	real-world	problems	are	more	complex	 than	
the	stylized	ones	written	about	in	a	software	pattern.	I	remember	a	time	when	we	devised	a	design	solution	to	
represent	roles	and	privileges	for	 individuals	belonging	to	multiple	organizational	structures.	 It	 far	exceeded	
the	simple	relationships	in	the	Accountability	and	Accounting	patterns	described	in	Fowler’s	Analysis	Patterns	
[Fowl].	 My	 less	 pattern	 savvy	 colleagues	 felt	 they	 hadn’t	 understood	 those	 patterns	 “correctly”	 when	 we	
needed	 to	 extend	 them.	Only	 after	 reviewing	 our	 design	 solution	with	Martin	 Fowler	 and	 passing	 along	 his	
remarks,	 that	 indeed,	 he	 thought	 our	 problem	 seemed	 to	 warrant	 a	 more	 complex	 solution,	 did	 they	 feel	
comfortable.	

	We	can	also	get	hung	up	on	the	notion	that	the	initial	authors	of	software	patterns,	e.g.	the	trailblazers	who	
blazed	more	visible	trail	markers	and	shored	up	parts	of	the	trail	making	it	easier	for	others	to	follow,	are	the	
best	 curators	 of	 their	 patterns’	 ongoing	 evolution.	 Often	 they	 are	 not.	 Patterns	 get	 modified,	 refined,	 and	
tweaked	during	 their	application.	 It	 is	 the	pattern	users	and	community	of	 software	designers	 that	embrace	
those	heuristics	and	push	them	to	their	limit	who	discover	more	useful	devices,	nuances,	modern	techniques,	
and	variations.	

Unless	 there	 is	a	strong	caring	community	around	the	original	pattern	authors,	 these	 insights	don’t	often	
get	 shared	 back	 to	 them.	 Even	 with	 feedback,	 renewed	 versions	 of	 “classic”	 patterns	 don’t	 happen	
automatically.	It	takes	sustained	energy	and	attention	to	detail	and	the	changing	software	design	landscape	to	
keep	 patterns	 relevant.	 Eric	 Evans	 speaks	 of	 a	 revitalization	 of	 the	 DDD	 community	which	 happened	when	
several	DDD	leaders	introduced	and	explained	the	relationships	between	domains,	bounded	contexts,	and	the	
implementation	of	domain	models	using	CQRS	and	Event-Sourced	architectures	[Dahan,	Young,	MiTu].	

I	spot	some	hesitancy	for	others	to	update	“official”	trails	mapped	out	by	the	original	patterns	authors;	not	
wanting	to	step	on	the	toes	of	those	trailblazers.	But	those	who	want	to	preserve	trails	can	and	should	become	
stewards1—volunteering	to	mend,	repair,	and	refine	those	trails	we	cherish.	What	we	trail	 followers	need	to	
recognize	is	that	not	all	trailblazers	are	natural	stewards	of	their	patterns’	evolution.	While	certain	trailblazers	
may	gladly	seek	company,	advice,	and	stewardship	help,	others	may	not.	And	some	may	have	moved	on,	having	
passed	 through	 their	 territory	 and	 on	 to	 newer	 ventures.	 Trail	 followers	 have	 just	 as	 much	 collective	
ownership	of	the	trails	they	use	as	those	who	initially	marked	them.	

1 See https://www.deschuteslandtrust.org/get-involved/volunteer/preserve-trail-stewards for an example call to
stewardship.

	
	

Traces, tracks, trails, and paths: An Exploration of How We Approach Design	Page	-	7	

5. FIELDNOTES	ON	AN	EXPERIMENT	COLLECTING	HEURISTICS	

Motivated	to	share	what	I’ve	learned	about	heuristics	and	to	stimulate	others	to	share	and	refine	their	own	and	
other	 well-known	 heuristics	 that	 might	 need	 refreshing/revisiting,	 I	 presented	 a	 keynote,	 Cultivating	 Your	
Design	Heuristics,	at	the	Explore	DDD	(Domain	Driven	Design)	2017	Conference	[Wirf17b].	I	hoped	to	inspire	
others	 to	 take	on	a	more	active	 role	as	Domain	Driven-Design	heuristics	 stewards.	The	 last	 sentences	of	my	
talk	abstract	had	this	challenge:	“To	grow	as	designers,	we	need	to	do	more	than	simply	design	and	implement	
working	software.	We	need	to	examine	and	reflect	on	our	work,	put	our	own	spin	on	the	advice	of	experts,	and	
continue	to	learn	better	ways	of	designing.”	

The	day	after	my	talk,	I	got	a	Twitter	direct	message	from	Mathias	Verraes,	one	of	the	thought	leaders	in	the	
Domain	Driven	Design	Community.	My	talk	had	inspired	him	to	get	serious	about	capturing,	and	recording	and	
organizing	his	own	heuristics.	So	we	met	for	a	couple	of	hours	at	the	conference	and	decided	to	capture	some	
heuristics.	 I	 was	 eager	 to	 have	 a	 conversation	 with	 Mathias	 and	 share	 ideas.	 Mostly	 I	 wanted	 to	 practice	
hunting	for	heuristics	through	conversation,	as	well	as	gain	insights	into	Mathias’	personal	design	heuristics	for	
events.	Mathias	 is	 expert	 in	 event-sourced	 architectures,	 an	 alternative	 to	 the	 “traditional”	 domain-layering	
architectures	 which	 includes	 patterns	 for	 storing	 and	 retrieving	 and	 updating	 Aggregate	 Roots	 into	
repositories,	which	Eric	Evans	had	written	about	in	his	book	(see	Figure	3).		

	

	

Figure	3.	A	layered	architecture	where	business	domain	objects	or	aggregates	are	maintained	in	a	database	that	is	accessed	through	a	
repository	which	hides	the	data	store	details	from	the	business	layer	logic.	

In	 a	 nutshell,	 instead	 of	 storing	 and	 updating	 Aggregates	 (e.g.	 complex	 business	 domain	 objects)	 into	
databases,	 with	 event-sourced	 architectures,	 immutable	 events	 are	 stored	 with	 just	 enough	 information	 so	
they	can	be	 “replayed”	 to	reconstitute	 the	current	state	of	any	Aggregate.	 In	essence,	an	event	 is	a	 record	of	
what	 the	software	has	determined	to	have	happened.	Whenever	work	 is	accomplished	 in	 the	system,	one	or	
more	“business	level	events”	are	recorded	that	represent	the	facts	known	at	the	time.	Events	are	generated	by	
a	 software	 process	 as	 a	 byproduct	 of	 determining	 what	 just	 “happened”	 and	 interpreted	 by	 interested	
downstream	 processes,	 which	 can	 in	 turn,	 as	 a	 result	 of	 processing	 or	 interpreting	 the	 events	 they	 are	
interested	in	receiving,	can	generate	even	more	events.	Each	event	is	preserved	in	an	event	store,	along	with	
relevant	information	about	the	event.	Figure	4	shows	a	representation	of	a	CQRS	(Command-Query-Response-
Segregation)	architecture,	one	approach	to	implementing	event-sourced	architectures.	It	should	be	noted	that	
although	the	figure	only	shows	one	event	store	and	one	read	model,	there	can	be	multiple	event	stores	(each	
representing	 some	 cumulative	 state	 of	 the	 system)	 and	 different	 projections	 or	 read	 models	 designed	 for	
specific	queries	about	those	events.		

	

	
	

Traces, tracks, trails, and paths: An Exploration of How We Approach Design	Page	-	8	

	
Figure	4.	A	representative	CQRS	Architecture	

I	didn’t	know	Mathias’	thinking	on	designing	event-sourced	architectures.	So	I	first	asked	him	to	explain	some	
fundamentals	 before	 sharing	 some	 heuristics	 for	 what	 should	 be	 published	 in	 an	 event.	 Throughout	 our	
conversation	Mathias	used	as	a	working	example	 the	designs	 for	car	rental,	 finance,	and	student	grading	 for	
courses	and	modules	given	by	instructors,	all	examples	drawn	from	actual	systems	he	had	designed.	

Mathias	quickly	rattled	off	two	heuristics,	along	with	examples:	
	
Heuristic:	A	Bounded	Context2	should	keep	its	internal	details	private.	
	
Heuristic:	Events	are	records	of	things	that	have	happened,	not	things	that	will	happen	in	the	future.		
	

For	example,	an	event	should	be	named	“a	reservation	for	a	car	rental	has	been	made”	instead	of	“rent	a	car”	if	
the	customer	has	just	gone	online	and	asked	to	rent	a	car.	People	often	confuse	what	has	just	happened	with	
real	world	events	that	are	in	the	future.	When	you	reserve	a	car	you	aren’t	actually	renting	it	(not	yet).	You’ve	
just	reserved	it	for	a	future	date.	

I	asked	Mathias	what	he	meant	by	keeping	internal	details	private.	
Mathias	then	shared	this	example:	If	you	are	keeping	monetary	units	in	say	10	digits	internally	in	a	service,	

you	would	only	pass	out	an	amount	in	2	digits	precision	because	that’s	all	other	consumers	of	the	event	outside	
of	the	Bounded	Context	would	need.	Perhaps	there	was	another	heuristic	exposed	by	this	example:	

	
Heuristic:	Don’t	design	message	or	event	contents	for	specific	subscribers	to	that	event.	

	
I	wanted	to	understand	the	implications	of	this	heuristic.	So	I	asked,	“So	does	that	mean	that	you	have	to	know	
what	processes	will	consume	any	event	in	order	to	design	an	event	record?”	The	discussion	then	got	a	bit	more	
nuanced.	Mathias	 said	 that	you	have	 to	understand	how	events	 flow	around	 the	system/business.	Whatever	

2 In Domain-Driven Design a Bounded Context is a unit of encapsulation where the interpretation and meaning of a
group of domain concepts are congruent. Other related, but not identical terms for this are sub-domains, subsystem, or
component. Different Bounded Contexts can have same-named domain concepts but have completely different
information and domain models associated with them. Consequently, in such designs, there are heuristics for
identifying Bounded Contexts and determining the relationships between them.

	
	

Traces, tracks, trails, and paths: An Exploration of How We Approach Design	Page	-	9	

you	do,	you	publish	business	events,	not	 technical	events	 that	are	consumed	by	other	processes	outside	of	a	
particular	 Bounded	 Contexts.	 So	 yes,	 you	 really	 need	 to	 know	 how	 business	 events	 might	 be	 used	 to	
accomplish	 downstream	 business	 processes	 in	 other	 Bounded	 Contexts.	 Events	 along	 with	 their	 relevant	
information,	 once	 published	 are	 simply	 streamed	out	 and	 stored	 over	 time	 to	 be	 picked	up	 (or	 not)	 by	 any	
process	 that	 registers	 interest	 in	 that	 event.	 So	 of	 course	 the	 consumer	 of	 an	 event	 needs	 to	 know	 how	 to	
unpack/interpret	the	information	payload	of	that	event.	

Distilling	what	he	said,	I	offered	this	heuristic:	
	
Heuristic:	 When	 designing	 an	 event-sourced	 architecture	 understand	 how	 events	 flow	 around	 the	
system/business.	

	
Our	conversation	continued.	

I	asked,	“Who	should	have	the	burden	of	decoding	or	translating	the	event	payload	into	the	form	needed?”	
Mathias	 answered,	 “the	 consumer,	 of	 course.	 But	 the	 generator	 of	 the	 event	 cannot	 ignore	 the	 needs	 of	

potential	consumers.	So	there	might	be	an	agreed	upon	standard	convention	for	money,	for	example,	is	2	digits	
precision.”	

This	led	us	to	conclude	we’d	uncovered	yet	another	design	heuristic:		
	
Heuristic:	Design	agreed	upon	standard	formats	for	information	in	business	events	based	on	expected	
usage.	

	
And	just	to	poke	at	an	edge	case	that	came	to	mind	as	we	were	talking,	I	asked,	“Well,	what	happens	if	a	new	
process	 needs	 that	 extra	 precision?”	 Mathias	 was	 quick	 to	 reply,	 “Well,	 maybe	 it	 needs	 to	 be	 within	 the	
Bounded	Context	of	that	process	that	knows	of	that	10	digits	precision.”	

I	 pushed	 back,	 “But	 what	 if	 it	 doesn’t	 logically	 belong	 in	 the	 same	 Bounded	 Context?”	 Which	 led	 us	 to	
conclude	 that	perhaps	 there	was	a	competing	heuristic	 that	needed	 to	be	considered	along	with	 the	 “Design	
agreed	upon	standard	formats”	heuristic:	

	
Heuristic:	When	designing	a	payload	for	an	event	don’t	lose	information/precision.		

	
That	led	Mathias	to	restate	that	while	information	within	a	Bounded	Context	might	contain	extra	precision	or	
information;	information	that	gets	passed	“outside”	a	Bounded	Context	via	a	Business	Event	shouldn’t	contain	
“private	details.”	Our	 conversation	 continued	 for	 over	 two	hours.	 I	 have	more	pages	of	 heuristics	notes	 and	
examples	that	I	will	only	briefly	summarize.	

Me:	How	much	information	should	be	passed	along	in	an	event	record?	
Mathias:	Just	the	key	information	about	that	event	so	you	can	“replay”	the	stream	of	events	and	recreate	the	

same	results.		
For	example,	if	it	is	a	“payment	received	event”,	you	don’t	want	to	pass	along	all	the	information	about	the	

invoice	that	was	paid.		
This	led	us	to	some	deep	discussion	about	events	and	time	and	that	time	is	really	important	to	understand	

(and	that	events	can	be	generated	by	noticing	the	passage	of	time,	too).	
More	heuristics	tumbled	out:	
		

Heuristic:	If	a	different	actor	performs	an	action	it	is	a	different	event.	
	
For	example,	 it	 is	one	 thing	 for	a	 customer	 to	 report	an	accident	with	 the	vehicle	or	 to	 return	a	 car,	 and	

another	thing	for	an	employee	to	report	an	accident	or	even	the	car	itself	if	it	has	telemetry	to	do	so.	These	are	
all	different	kinds	of	events.	

We	discussed	more	heuristics	about	events:		
	

Heuristic:	 If	 there	 are	 different	 behaviors	 downstream,	 then	 multiple,	 different	 events	 might	 be	
generated	from	the	same	process.	

	

	
	

Traces, tracks, trails, and paths: An Exploration of How We Approach Design	Page	-	10	

And	 this	 is	when	Mathias	 started	 to	 draw	 a	 representation	 of	 his	 architecture	 for	 event	 streaming	 and	 the	
events	that	happen	over	time.	He	stated	that	since	all	events	are	available	to	a	process,	it	can	find	out	the	“set”	
of	events	it	is	interested	in	to	drive	behavior.	

	
Heuristic:	Look	for	a	pattern	of	events	within	an	event	stream	to	drive	system	behaviors.	

	
For	 example,	 you	 might	 want	 to	 design	 your	 system	 to	 not	 send	 an	 overdue	 notice	 if	 you’ve	 recently	

received	payments,	however	recent	 is	defined	by	 the	business.	To	do	 that,	 the	overdue	notice	process	might	
query	 the	 event	 store	 for	 payments	 to	 find	 previous	 events	 (and	 check	 their	 timestamps)	 before	 sending	
overdue	notices.		

We	also	 talked	about	 the	 situation	where	a	 customer	changes	addresses	 too	 frequently	 (say	3	 times	 in	a	
single	week).	Perhaps	this	detection	of	events	might	cause	a	fraud	detection	process	to	be	initiated.	And	even	
the	same	stream	of	events	coming	in	at	a	different	timescale	might	represent	an	opportunity	initiate	different	
behaviors/processes.	
	

Heuristic:	Consider	 the	 timescale	when	 looking	 for	patterns	of	events.	The	same	set	of	events	over	a	
different	time	period	might	be	of	interest	to	a	different	business	process.	

	
We	 reluctantly	 concluded	our	 conversation	when	we	were	 invited	 to	 join	 the	 conference’s	 closing	 circle.	

Mathias	had	written	on	both	sides	of	a	big	sheet	of	paper,	sketching	ideas	as	he	went.	I	asked	if	he	wanted	to	
keep	 the	 paper.	 He	 said	 no,	 he	 knew	 this	 by	 heart	 as	 he	 covers	 what	 we	 had	 talked	 about	 in	 a	 three-day	
workshop	he	conducts.	I	now	wish	that	I	had	taken	a	photo	of	his	scribbling	to	jog	my	memory.	

5.1 Reflections	on	the	distillation	process	
This	was	my	very	first	attempt	at	actively	distilling	someone	else’s	design	heuristics.	I	didn’t	want	to	bog	down	
our	 conversation	 by	 taking	 copious	 notes	 or	 interrupting	 the	 conversation	 to	 stop	 and	 record	 any	 specific	
heuristic	 or	 tweak	 the	 wording	 of	 what	 Mathias	 said	 or	 wrote.	 So	 I	 waited	 to	 write	 up	 notes	 about	 our	
conversation	 from	 memory	 that	 evening3.	 My	 goal	 wasn’t	 to	 come	 up	 with	 a	 completely	 polished	 pile	 of	
publishable	heuristics,	just	a	few	to	get	started.	

I	learned	these	things	from	this	experiment:	
• Listen.	I	need	to	restrain	from	sharing	my	own	heuristics	and	design	thoughts	in	order	to	let	Mathias’	

heuristics	come	out.	My	primary	goal	was	to	pick	out	and	follow	his	trail	of	heuristics,	not	mingle	them	
with	my	own.	I’m	not	used	to	doing	this,	so	I	didn’t	always	silence	my	internal	thoughts	enough	so	I	
could	listen	more	intently.	This	will	take	practice.	

• Let	the	conversation	wander.	 It’s	OK	to	 let	 the	conversation	wander	to	where	the	person	you	want	to	
glean	knowledge	from	takes	it.	But	don’t	let	it	wander	too	far	away	from	the	topic.	It	is	good	to	have	a	
design	topic	around	which	to	focus.	Our	focus	was	the	design	of	event	records.	It	wandered	a	bit	to	an	
equally	 interesting	 topics,	 event	 patterns	 and	 time,	 but	 since	 that	 wasn’t	 our	 original	 focus,	
unfortunately,	 I	didn’t	capture	 those	heuristics	so	clearly.	The	goal	 is	 to	 tease	out	 traces,	 tracks,	and	
trails	of	interesting	ideas	that	you	want	to	pursue	further.	

• Prepare	 beforehand.	 If	 you	 aren’t	 familiar	 with	 the	 jargon	 around	 the	 particular	 topic,	 prepare	
beforehand.	I	already	knew	the	“classic”	DDD	patterns	and	a	bit	about	event-sourced	architectures.	So	
I	didn’t	stumble	over	Bounded	Contexts,	Event	Records,	or	Aggregates.	Someone	unfamiliar	with	those	
patterns	would’ve	had	more	difficulty	following	what	was	said.	Trail	markers	make	sense	only	if	you	
know	what	you	are	looking	for.	

• Ask	questions.	Sometimes	I	felt	like	a	two	year	old	constantly	asking,	why,	why,	why…but	I	found	that	
uncovering	edge	cases	helped	clarify	ideas,	tease	out	nuances,	and	uncover	the	scope	(and	certainty)	
around	a	particular	heuristic.	We	even	uncovered	competing	heuristics	that	way.	

3 I was inspired to do so by advice in Writing Ethnographic Fieldnotes [Emer]

	
	

Traces, tracks, trails, and paths: An Exploration of How We Approach Design	Page	-	11	

• Ask	for	realistic	examples.	Design	heuristics	grounded	in	realistic	situations	are	on	more	solid	ground.	
Use	 realistic	 examples	 instead	 of	made	 up	 ones.	 For	 example,	 we	 don’t	 need	 to	 create	 yet	 another	
design	for	an	Automated	Teller	Machine	(ATM)4.		

• Ask	what	would	happen	if?	 I	did	this	to	gain	a	better	understanding	what	would	happen	if	the	design	
context	 changes	 slightly.	 Nuances	 are	what	makes	 the	 process	 of	 design	 so	 interesting	 and	 pattern	
writing	so	hard.	

• Go	with	the	flow.	There	is	no	need	to	stop	to	record	every	heuristic	in	real	time.	Writing	up	field	notes	
shortly	 after	our	 conversation	allowed	me	 to	be	 in	 the	moment	during	our	 conversation	 and	 to	 ask	
more	probing	questions	than	if	I	had	been	pausing	to	take	notes.	Perhaps	I	would’ve	gotten	more	out	
of	our	conversation	if	I	had	made	an	audio	recording	of	it.	But	I	am	not	certain	about	that.	The	“crutch”	
of	having	a	record	might’ve	lulled	me	into	not	being	so	active	at	remembering	and	recounting.	Sure,	I	
missed	 some	 of	 Mathias’	 heuristics	 on	 modeling	 time.	 In	 hindsight,	 I	 think	 at	 that	 point	 of	 our	
conversation	 I	was	 listening	 less	 intently	 because	 I	 thought	 I	 knew	 a	 lot	 about	 time.	 But	 also	 I	was	
getting	tired.	Active	listening	is	mentally	taxing.	

• Photograph	scribbles	and	drawings	to	jog	your	memory.	It’s	easy	to	do	if	the	person	you	are	conversing	
with	is	drawing	while	they	talk.	Mathias	drew,	but	he	crumpled	up	the	paper	after	our	conversation.	So	
I	 lost	a	valuable	memento	that	would	have	helped	me	remember	his	heuristics	about	time	and	what	
constitutes	 an	 event.	 I’ll	 need	 significant	 practice	 if	 I	want	 to	 distill	 heuristics	while	 simultaneously	
making	sketch	notes.	Oh	well.	I	know	I	need	at	least	one	more	conversation	with	Mathias.	

5.2 Certainty	about	the	heuristics	we	distill	
Mathias	shared	several	heuristics	in	a	fairly	short	time.	The	heuristics	Mathias	explained	were	grounded	in	his	
direct	 experience	 designing	 and	 building	 several	 event-sourced	 architectures	 using	 Domain	 Driven	 Design	
concepts	and	patterns.	What	we	discussed	was	 just	a	 taste	of	what	he	knows.	The	heuristics	Mathias	shared	
were	on	the	whole	pretty	useful,	even	though	the	design	of	event-sourced	systems	is	a	big	topic	and	we	jumped	
right	 into	 the	middle	 of	 it.	 In	 hindsight,	 some	 heuristics	 seem	 self-evident	 and	 hard	 to	 apply.	 For	 example,	
“don’t	lose	information/precision”	seems	obvious	(if	you	lost	information,	then	you	wouldn’t	be	able	to	trigger	
workflows	in	other	components	in	your	system	or	be	able	to	“replay”	events	to	reconstitute	the	current	state	of	
system	things).	

The	heuristics	I	like	best	are	those	where	I	can	take	some	specific	action	and	then	see	whether	it	results	in	
forward	 design	 progress.	 I	 don’t	 know	 exactly	 what	 to	 do	 with	 the	 heuristic,	 “Don’t	 lose	
information/precision,”	other	 than	to	verify	what	each	consumer	of	an	event	might	need.	Which	 leads	me	to	
appreciate	 that	 event	 records	 shouldn’t	 be	 designed	 in	 isolation	 from	 their	 potential	 consumers.	 Perhaps	 I	
should	 have	 restated	 this	 heuristic	 as,	 “Design	 event	 records	 to	 convey	 the	 precision	 needed	 by	 known	
consumers	of	the	event.”	

When	I	make	that	wording	change	then	I	 find	that	the	heuristic,	“Don’t	design	information	contents	of	an	
event	record	for	specific	consumers,”	needs	further	scrutiny.	There’s	conflicting	advice	in	these	two	heuristics.	
On	the	one	hand	I	can’t	be	overly	specific	when	I	design	the	information	in	an	event	record,	but	if	a	consumer	
needs	 specific	 information	 that	 varies	 from	 the	 typical	 consumer,	 what	 are	 my	 options?	 This	 seems	 like	 a	
meaty	 topic	 warranting	 further	 investigation.	 We	 briefly	 touched	 on	 this	 during	 our	 conversation,	 when	
Mathias	suggested,	well,	 if	the	process	needs	that	extra	precision,	maybe	it	needs	to	be	in	the	same	Bounded	
Context.	 But	 I	 pushed	 back,	 saying	 if	 it	 has	 different	 behaviors	 and	 needs	 different	 information,	 perhaps	 it	
belongs	in	a	different	Bounded	Context.	

I	 remember	 the	heuristic	 that	 you	might	want	 to	 generate	different	 events	 for	 the	 same	process.	But	we	
didn’t	go	into	any	detailed	examples.	So	how	much	could	I	bend	that	heuristic	(is	it	cheating?)	to	make	it	fit	this	
situation?	

Other	 heuristics	 seem	 less	 important—footnotes	 really.	 “Agree	 upon	 standard	 formats	 for	 information,”	
seems	 simply	 good	design	practice,	 and	not	 particularly	 unique	 to	 event-sourced	 architecture.	 And	 isn’t	 the	
heuristic,	 “A	bounded	context	 should	keep	 its	 internal	details	private,”	 just	another	 restatement	of	 the	more	
general	 design	 practice	 of	 encapsulation?	 Or	 is	 there	 something	 more	 there	 significant	 to	 Domain-Driven	

4 We presented a design for this in our first book on object-oriented design [WWW]. For some reason, when authors
first started writing about object-oriented design, they used the design for an ATM as a stock example.

	
	

Traces, tracks, trails, and paths: An Exploration of How We Approach Design	Page	-	12	

Design’s	modeling	approach?	 I	 suspect	digging	 into	 this	 topic	 could	 lead	 to	another	 long	conversation	about	
Mathias’	heuristics	for	determining	what	should	be	in	a	Bounded	Context	and	under	what	situations	would	you	
refactor,	split,	or	merge	Bounded	Contexts.	

Sure,	these	heuristics	were	rough	cuts.	They’ll	need	refinement	and	more	details	before	others	who	don’t	
have	direct	access	to	Mathias	can	find	them	useful	on	their	own.	Popping	up	a	level,	it	is	apparent	that	there	are	
a	 few	 fundamental	 concepts	 that	 need	 to	 be	 understood	 before	 you	 can	 understand	 how	 to	 design	 event	
records.	Unless	you	know	what	an	aggregate	is,	heuristics	about	what	information	to	record	from	the	aggregate	
root	in	an	event	record	won’t	make	sense.	Heuristics	specific	to	approaches	to	designing	an	aggregate	(if	there	
are	any)	in	the	context	of	an	event-sourced	architecture	also	need	explaining.	Which	leads	me	to	wonder,	what	
are	ways	to	effectively	model	an	aggregate	 in	event-sourced	architectures?	Do	you	make	 lightweight	domain	
models	 or	 something	 else?	 How	 does	 event-storming,	 another	 technique	 known	within	 the	 Domain-Driven	
Design	community	used	to	capture	flows	of	business	events	fit	in	[Bran]?	

I	 know	 how	 to	 model	 aggregates	 in	 a	 layered	 architecture,	 but	 event-sourced	 architectures	 are	 new	
territory	for	me.	Are	there	heuristics	for	ensuring	the	business	event	record	contents	and	various	event	stores	
have	the	“right”	representation	of	information?	How	should	you	reference	other	aggregates	or	entities	within	
an	event	record?	One	answer	seems	obvious—use	a	unique	identifier	for	an	aggregate…	but	are	there	specific	
heuristics	for	how	these	might	be	generated	in	an	event-sourced	architecture?	Can	I	use	my	prior	knowledge	of	
how	to	do	so	for	different	architectures?	

I	 am	 sure	 we	 left	 out	 some	 important	 heuristics,	 simply	 because	 our	 conversation	 wandered.	 A	
conversation	 to	 distill	 heuristics	 is	 not	 like	walking	 a	 trail.	 Interesting	waypoints	 are	 discovered	 during	 the	
conversation	 and	 sometimes	 the	 conversation	 wander	 offs	 into	 the	 weeds.	 What	 may	 initially	 appear	
important	during	the	conversation	may	not	be	nearly	so	fascinating	after	some	reflection.	Conversations,	like	
designs,	are	not	straightforward.	

Several	have	written	about	event-sourced	architectures.	Martin	Fowler’s	early	blog	post	on	event	sourcing	
[Fowl5]	 laid	 some	early	 conceptual	 groundwork	 for	 event	 sourcing,	discussed	what	kinds	of	 applications	he	
had	found	that	might	be	appropriate	to	use	event	sourcing,	and	provided	simple	code	examples.	Greg	Young’s	
book,	Versioning	 in	 an	 Event	 Sourced	 System	 [Youn],	 concentrates	 on	 versioning	 events,	 a	 seemingly	minor	
design	challenge	until	you	get	into	the	nitty	gritty	design	details.		

Microservices.io	 has	 a	 single	 web	 page	 on	 the	 event-sourcing	 pattern,	 along	 with	 pages	 for	 other	
microservice	 architecture	 patterns	 [Rich].	 Chris	 Richardson,	 founder	 of	 Microservices.io,	 has	 also	 collected	
them	 into	 a	 book,	 Microservice	 Patterns:	 With	 Examples	 in	 Java	 [Rich18].	 I	 like	 the	 approach	 taken	 at	
Microservices.io	 where	 patterns	 are	 presented	 in	 some	 detail	 and	 readers	 can	 ask	 questions	 and	 add	
comments.	Chris	Richardson	is	an	active	steward	of	these	patterns	as	well	as	a	trail	guide—clarifying	points	of	
confusion,	directing	people	to	other	sources	to	explore,	and	trying	to	get	at	the	real	problem	that	underlies	the	
question	that	are	asked.	Some	questions	led	to	quite	interesting	threaded	discussions.	

Reading	 these	 threads	 I	 felt	part	of	a	community	of	 fellow	pattern	 travellers	on	a	 journey	 toward	deeper	
understanding.	 I	 wanted	 to	 hear	 from	 other	 designers	 who	 were	 more	 experienced	 with	 event-sourcing	
implementations.	 I	 liked	hearing	other	voices	and	 learned	as	much	 from	others’	points	of	 confusion	as	 from	
their	 direct	 experiences.	With	 design,	 the	 devil	 is	 always	 in	 the	 details.	 Conflicting/competing	 design	 forces	
that	you	need	to	address	compel	you	to	make	some	difficult	choices.	

However,	 one	 question	 (a	 question	 I	 also	wanted	 the	 answer	 to)	 remained	 unanswered:	 “…I'm	 trying	 to	
figure	out	how	I	would	apply	this	pattern	to	a	large	CRUD	screen	where	the	commands	mainly	consist	of	Save,	
Update,	and	Add	for	objects	with	several	fields.	Thanks!”	

Probably,	the	answer	to	this	is	that	it	isn’t	an	appropriate	situation	for	using	an	event-sourced	architecture.	
If	you	are	doing	CRUD	operations	to	a	database	and	that	database	is	used	by	other	applications	outside	of	your	
control	or	 sphere	of	knowledge,	you	aren’t	 likely	 to	have	a	good	understanding	of	how	 that	data	 is	used.	So	
turning	 an	 existing,	working	 design	 on	 its	 head	 to	 generate	 events	with	 rich	 information	 about	 the	 domain	
doesn’t	 make	 sense	 without	 first	 understanding	 how	 those	 other	 applications	 use	 and	 manipulate	 that	
information.	This	may	or	may	not	be	easy	to	sort	out	without	doing	some	serious	investigation.	On	the	other	
hand	 if	your	design	 is	 simple,	efficient	and	works,	why	change	 it	 to	an	event-sourced	one?	There	have	 to	be	
good	reasons	to	make	that	significant	redesign	investment.		

I’m	being	transparent	about	my	lack	of	knowledge	to	make	a	point:	to	keep	learning,	you	have	to	search	for	
design	heuristics	that	are	outside	your	comfort	zone.	We	become	wayfinders	when	we’re	in	unfamiliar	design	

	
	

Traces, tracks, trails, and paths: An Exploration of How We Approach Design	Page	-	13	

territory.	 This	 learning	 can	 be	 a	 difficult	 and	 frustrating	 slog	 when	 heuristics	 are	 scattered,	 inconsistent,	
overlapping,	 or	 out-of-date.	 It	 takes	 effort	 to	 sort	 out	 the	 good	 bits	 from	 the	 noise,	 to	 find	 and	 follow	 any	
potential	tracks.	Especially	frustrating	is	when	no	one	else	has	asked	the	questions	you	need	answered.	When	I	
am	not	on	a	 track	 that	others	have	recently	walked	 I	 feel	 isolated.	And	yet,	 I’m	not	 lost.	 I’m	simply	on	some	
track.	My	 track.	 And	 there’s	 no	 one	 ahead	 of	me	 that	 I	 can	 see.	More	 useful	 information	 is	 likely	 available,	
waiting	for	me	to	bump	into	it,	if	I	knew	where	to	look.	And	if	I	can’t	find	it,	well,	I	can	always	experiment	and	
draw	upon	my	past	experiences.	

And	yet,	how	certain	can	I	be	about	advice	I	find?	I	tend	to	trust	patterns	authors	who	put	in	the	time	and	
effort	 to	polish	and	publish	 their	work,	who’ve	 spent	 time	marking	 their	 trails	and	 checking	 that	others	 can	
follow	 them.	 I	 place	 high	 value	 on	 the	 advice	 of	 those	who’ve	 built	 interesting	 systems	 and	 can	 tell	 stories	
about	what	 they	 learned	 including	 design	missteps	 and	 how	 they	 eventually	made	 forward	 progress.	 But	 I	
don’t	 necessarily	 throw	 away	 what	 I	 have	 found	 useful	 just	 because	 someone	 is	 enthusiastic	 about	 a	 new	
software	 design	 approach	 and	 a	 new-to-me	 set	 of	 heuristics.	 They	may	 be	 experts	 at	 some	 software	 design	
approaches	 that	 take	 years,	 if	 not	 a	 lifetime,	 to	master.	 At	 best,	 I	might	 only	 be	 able	 to	 clumsily	 apply	 their	
heuristics	 after	 concerted	 effort	 and	 practice.	 Or,	 quite	 simply,	 they	 may	 be	 trailblazers	 to	 places	 where	 I	
cannot	or	do	not	want	to	go.	

6. TECHNIQUES	FOR	ACTIVELY	CULTIVATING	DESIGN	HEURISTICS	

We	 each	 have	 our	 own	 set	 of	 heuristics	 we’ve	 acquired	 through	 reading,	 practice,	 and	 experience.	 Our	
heuristics,	like	living	trails,	continue	to	evolve	and	get	honed	through	experience.	Some	of	our	heuristics	prove	
durable	and	useful,	even	in	new	design	contexts.	For	example,	for	me,	using	the	lens	of	role	stereotypes	from	
Responsibility-Driven	Design	[Wir02]	to	understand	system	behaviors	is	still	useful,	even	though	I	know	there	
are	 newer	 stereotypes	 for	 functional	 designs	 and	 Internet	 applications	 that	 people	 are	 writing	 about.	
Characterizing	 roles	 and	 interaction	 patterns	 is	 a	 useful	 heuristic	 to	 understand	 the	 designs	 of	 existing	
systems.	 I	 never	 envisioned	 the	 original	 stereotypes	 I	 conceived	 to	 help	me	 and	 others	 understand	 object-
oriented	 designs	 were	 universal	 and	 all	 the	 stereotypes	 that	 there	 were.	 So	 I	 welcome	 learning	 new	
characterizations	of	design	behaviors.	

Some	 heuristics	 we	 discard	 because	 our	 design	 constraints	 radically	 change.	 I	 no	 longer	 worry	 about	
managing	memory	footprint	and	have	put	aside	heuristics	that	were	useful	back	when	I	designed	systems	that	
required	memory	overlays—for	me	that	trail	has	been	long	abandoned.	Other	heuristics	get	pushed	to	the	back	
of	 our	 minds	 when	 we	 find	 new	 or	 trendier	 heuristics	 we	 like	 better.	 When	 I	 discovered	 object-oriented	
techniques,	I	put	aside	other	approaches	to	structuring	systems	because	I	found	objects	to	be	so	useful.	Long	
ago	I	took	a	decision	to	head	down	that	trail	and	have	continued	on	that	journey.	

To	 keep	 learning,	 we	 need	 to	 integrate	 new	 heuristics	 with	 those	 we	 already	 know.	 Billy	 Vaughn	 Koen	
cautions	us	to	not	judge	our	earlier	designs	(or	earlier	designers)	too	harshly	against	today’s	design	standards.	
Collectively,	our	state-of-the-art	keeps	progressing.	And	as	active,	engaged	designers,	so	do	we.	Recently	I	have	
been	 exploring	 functional	 programming	 languages	 and	 designs	 that	 employ	 them,	 simply	 because	 I	want	 to	
compare	heuristics	for	designing	these	systems	with	older,	more	familiar-to-me	heuristics.	I	don’t	want	to	get	
stuck	in	a	rut.	Although	I	may	not	become	an	expert,	I’ll	be	a	better	designer	with	a	richer	set	of	tools.	

6.1 Recording	“Sign”	with	Question-Heuristic-Example	Cards	
I	 have	 also	 experimented	with	ways	 to	 articulate	new-to-me	heuristics	 in	 order	 to	 see	how	 they	 fit	 into	my	
heuristic	gestalt.	I’ve	been	playing	around	with	using	index	cards	as	a	means	to	capture	the	gist	of	a	heuristic.	
This	simple	technique	structures	a	heuristic	in	three	parts:	a	question,	the	answer	(which	can	be	then	polished	
into	a	formulation	of	the	heuristic),	and	an	example	or	two	to	help	me	remember.	I	call	them	QHE	or	“Q-Hee”	
cards,	 for	 the	 lack	 of	 a	 better	 name	 (see	 Figure	 5).	 This	 use	 of	 index	 cards	 to	 capture	 design	 heuristics	 is	
inspired	 by	 CRC	 (Class-Responsibility-Collaborators)	 design	 cards	 invented	 by	Ward	 Cunningham	 and	 Kent	
Beck	[BC].	
	

	
	

Traces, tracks, trails, and paths: An Exploration of How We Approach Design	Page	-	14	

	
Figure	5.	Following	this	heuristic,	3	different	events	would	be	generated	because	there	are	3	different	actors.	

An	advantage	of	QHE	cards	is	that	they	are	easy	to	write.	
But	just	like	CRC	cards,	they	can	be	too	terse.	
Without	actively	integrating	the	heuristic	captured	on	a	QHE	card	into	my	design	heuristic	gestalt,	I	find	it	

quickly	 loses	meaning.	Once	 I	 convert	 these	 to	 a	 richer	 form	 (either	 by	writing	more	 about	 the	heuristic	 or	
sketching	out	a	more	detailed	design	example	or	writing	some	code),	 I	can	then	recall	more	subtleties	about	
that	heuristic.	

	
6.2 Distilling	what	you	hear	
One	way	 I	 can	more	 actively	 learn	 is	 to	 view	 technical	 presentations	 as	 opportunities	distill	 the	heuristics	 I	
hear	and	attempt	to	integrate	those	heuristics	with	my	own.	I	have	discovered	that	if	I	take	a	picture	of	some	
interesting	 speaker	 and/or	 a	 slide	 they	were	presenting	 it	 serves	 to	 jog	my	memory.	 Looking	at	 the	picture	
helps	me	remember	what	they	said	so	I	can	write	up	field	notes,	if	I	choose,	long	after	the	presentation.	

Here	are	two	photos	I	took	at	the	DDD	Europe	2018	conference.	
The	 first	 is	of	Eric	Evans	 telling	us	 the	 story	of	how	he	goes	about	exploring	a	design	concept	and	all	 its	

limitations	and	design	surprises.	 I	 found	each	 line	on	the	slide	to	be	a	personal	heuristic	Eric	uses	to	do	this	
The	rest	of	his	talk	was	filled	with	examples	exploring	the	quirks	and	complexities	of	date	and	time.	

	

	
	

Traces, tracks, trails, and paths: An Exploration of How We Approach Design	Page	-	15	

	
Figure	6.	Photo	from	Eric	Evans’	keynote	at	Domain	Driven	Design	Europe	2018	introducing	how	he	understands	a	domain	

The	next	photo	is	from	a	talk	by	Michiel	Overeem	[Over]	on	versioning	event	stores,	a	fundamental	element	
of	 event-sourced	 architectures	 (see	 Figure	 7).	 This	 slide	 summarizes	 the	 various	 approaches	Michiel	 found	
when	 he	 surveyed	 other	 designers.	 Event	 stores	 are	 supposed	 to	 be	 immutable.	 You	 use	 them	 to	 play	 back	
events	and	recreate	system	state.	Conceptually	they	are	write	once	stores.	But	if	your	event	schema	changes,	
various	components	need	 to	 then	be	able	 to	 interpret	 these	new	event	structures.	So	how	do	you	make	 that	
work	in	practice?	You	select	a	versioning	approach,	as	summarized	by	the	slide	below,	depending	on	the	size	of	
your	event	store,	the	ability	to	handle	extra	information	on	an	event	or	to	transform	on	the	fly	to	a	new	event	
format,	whether	 it	 is	 permissible	 to	 update	 a	 record	 in	 place,	 or	 if	 it	 is	 expedient	 to	make	 a	 copy	 and	 then	
transform	to	a	new	format.	

While	Michiel’s	 talk	was	 eventually	 put	 online,	 this	 photo	was	 enough	 to	 jog	my	memory	 and	make	 the	
connections	 between	 heuristics	 for	 updating	 event	 stores	 and	 heuristics	 I’d	 written	 in	 pattern	 form	 for	
updating	 Adaptive	 Object	 Model	 (AOM)	 systems	 [WYW,	 HLNSWY].	 Although	 Event-sourced	 and	 Adaptive	
Object-Model	systems	are	quite	different	architecture	styles,	they	have	similar	challenges	with	updating	their	
models’	schemas.		

	

	
	

Traces, tracks, trails, and paths: An Exploration of How We Approach Design	Page	-	16	

	
Figure	7.	Photo	of	summary	slide	from	Michiel	Overeem’s	presentation	on	Event	Sourcing	After	Launch	

6.3 Sharing	Heuristics	to	Start	Conversations	
Since	my	initial	conversation	with	Mathias,	we’ve	both	become	energized	to	do	more	heuristics	hunting.	This	
led	to	a	heuristics	distillation	workshop	I	held	with	some	designers	at	DDD	Europe	2018	and	again	in	2019.	At	
that	workshop	I	shared	my	heuristics	journey	and	then	participants	shared	a	few	of	their	cherished	heuristics.	
I’ve	also	given	other	presentations	about	design	heuristics	and	have	encouraged	others	to	articulate	and	share	
their	heuristics.	Consequently,	Victor	Bonacci	held	a	workshop	at	Agile	2018	on	Coaching	Heuristics:	What’s	in	
Your	 Toolkit?	 Coaching	 heuristics	 aren’t	 software	 heuristics,	 but	 in	 Vaughn	 Koen’s	 definition	 of	 design	
heuristics,	they	do	fit:	Any	thing	we	do	in	an	attempt	to	make	forward	progress	towards	a	goal.	

The	format	of	Victor’s	workshop	was	effective.	First	he	explained	what	heuristics	were,	then	showed	a	slide	
listing	the	54	coaching	heuristics	he	had	collected	over	the	years	organized	by	category.	Victor	has	also	created	
a	card	deck	for	his	heuristics.	He	gives	them	out	as	gifts.	On	the	face	of	each	card	is	an	illustration	or	phrase	and	
on	the	backside	the	name/source	of	the	heuristic.	He	finds	the	deck	a	useful	way	to	jog	his	memory	as	well	as	
means	of	sharing	just	the	gist	of	their	idea	with	others	(see	Figure	8).	

Teaching	 us	 each	 heuristic	 in	 this	 long	 list	 would	 have	 been	 overwhelming.	 Instead,	 Victor	 quickly	
introduced	two	or	three	heuristics	in	a	category	and	then	gave	us	a	situation	to	briefly	discuss.	We	also	had	a	
deck	of	Victor’s	coaching	heuristics	to	refer	to	if	we	wanted.	In	small	groups	we	discussed	what	heuristics	(our	
own	or	others	we	had	heard	about)	we	might	try	to	improve	the	situation.	After	each	round	of	discussion,	a	few	
shared	what	they	had	talked	about	with	the	larger	group.	We	repeated	this	cycle	three	or	four	times,	learning	a	
few	more	of	Victor’s	heuristics,	but	 also,	more	 important	 it	 seems,	 sharing	our	own	heuristics.	Although	 the	
format	 of	 this	 workshop	 was	 similar	 to	 that	 of	 patterns	 mining	 workshops	 [AKSHSI],	 it	 wasn’t	 focused	 on	
capturing	heuristics	so	much	as	it	was	on	getting	people	to	share	their	experiences.	

	

	
	

Traces, tracks, trails, and paths: An Exploration of How We Approach Design	Page	-	17	

	
Figure	8.	Coaching	Heuristics	Cards	created	by	Victor	Bonacci.	Each	card	carries	the	gist	of	the	heuristic,	either	as	a	

drawing	or	phrase	on	the	front	side,	and	the	name	and	source	on	the	back.	

6.4 Holding	an	Imaginary	Debate	
One	 way	 to	 appreciate	 another	 designer’s	 approach	 is	 to	 walk	 a	 mile	 in	 their	 shoes.	 Barring	 that	 rare	
opportunity,	an	intriguing	alternative	is	to	take	some	design	advice	you	find	and	imagine	having	a	thoughtful	
debate	with	that	designer.	Counter	their	advice	with	an	opposing	set	of	arguments.	Then,	distill	the	essence	of	
the	 heuristics	 you	 find	 in	 both	 your	 arguments	 and	 reflect	 on	 the	 relationships	 between	 the	 heuristics	
embedded	 in	 each	 point	 of	 view.	 I	 find	 this	 is	 easier	 to	 do	 if	 you	 have	 either	 a	 strong	 negative	 or	 positive	
reaction	to	some	particular	bit	of	advice.	Surprisingly,	arguing	for	an	approach	that	differs	from	your	preferred	
design	heuristic	helps	you	appreciate	that	different	perspective.	

For	example,	Paul	Graham,	in	an	essay	Revenge	of	the	Nerds	[Grah]	writes,	“As	a	rule,	the	more	demanding	
the	 application,	 the	 more	 leverage	 you	 get	 from	 using	 a	 powerful	 language.	 But	 plenty	 of	 projects	 are	 not	
demanding	 at	 all.	 Most	 programming	 probably	 consists	 of	 writing	 little	 glue	 programs,	 and	 for	 little	 glue	
programs	you	can	use	any	language	that	you’re	already	familiar	with	and	that	has	good	libraries	for	whatever	
you	need	to	do.”	

One	counterargument	to	Paul’s	thesis	might	be,	“What	you	recommend	for	complex	systems	makes	sense—
use	 a	 powerful	 programming	 language.	 But	 if	 I	 am	 not	 in	 a	 time	 crunch	 and	what	 I’m	 building	 is	 simple,	 I	
shouldn’t	always	take	the	easy	path.	If	always	I	took	your	advice	for	simple	programs,	how	would	I	ever	learn	
anything	new?	If	 the	problem	is	simple,	 that	might	be	the	perfect	opportunity	for	me	to	try	out	new	ways	to	
solve	it	and	learn	something	new,	especially	when	the	consequences	of	failure	isn’t	high.	Also,	sometimes	what	
appears	 to	 be	 simple	 turns	 out	 to	 be	 more	 complicated.	 And	 when	 I	 push	 on	 the	 limits	 of	 what	 tools	 and	
frameworks	were	designed	to	do,	it	is	important	to	stop	and	rethink	my	current	approach	instead	of	trying	to	
hack	away	at	it	until	I	patch	together	a	solution.	Or	at	least	take	a	break	before	coming	back	to	what	I’ve	been	
struggling	with.”	

Two	heuristics	distilled	from	Paul	Graham’s	advice:	
	
Heuristic:	Use	powerful	programming	language/toolset	hand	when	you	have	a	demanding	design	problem.	
	
Heuristic:	 It	 doesn’t	 matter	 what	 programming	 language	 you	 use	 if	 you	 have	 a	 simple	 program.	 Use	
programming	languages,	tools,	and	frameworks	and	libraries	you	are	familiar	with.	

	
And	the	three	heuristics	found	in	my	counterargument:		
	
Heuristic:	Use	simple	design	tasks	as	an	opportunity	to	 learn	new	design	approaches,	 tools,	programming	
languages,	and	frameworks,	especially	when	you	aren’t	in	a	time	crunch.	
	
Heuristic:	When	 you	 find	 yourself	 constantly	 fighting	 against	 the	 common	 usage	 of	 a	 framework,	 revisit	
your	current	design	approach.	
	

	
	

Traces, tracks, trails, and paths: An Exploration of How We Approach Design	Page	-	18	

Heuristic:	Take	a	break	when	you	have	been	working	too	long	and	don't	feel	like	you	are	making	progress.	
	
On	reflection,	Paul	Graham’s	advice	seems	geared	 towards	designers	who	 find	 they	waste	 too	much	 time	

trying	 new	 tools	 and	 techniques	 instead	 of	 implementing	 workable,	 familiar	 solutions.	 On	 the	 other	 hand,	
without	stretching	and	trying	something	new,	designers	can	get	stuck	in	a	rut.	Both	viewpoints	have	validity.	
There	 are	 always	 competing	 heuristics.	 And	 depending	 on	 your	 current	 context,	 past	 experiences,	 and	
preferences,	you	decide	what	to	do.	

6.5 The	work	of	reconciling	new	heuristics	with	your	SOTA	
Sometimes	 it	 takes	 effort	 to	 understand	 and	 then	 reconcile	 newfound	 heuristics	 with	 your	 existing	 ones.	
Designers	use	different	terms	to	describe	similar	(but	not	identical)	concepts.	Mapping	others’	terminology	to	
your	language	can	be	fraught	with	uncertainty.	

To	illustrate	this	difficulty,	I	took	advice	from	Daniel	Whittaker’s	blog	post	[Whit]	on	validating	commands	
in	a	CQRS	architecture	and	tried	to	align	his	heuristics	with	mine	for	validating	input	from	an	http	request.	

My	heuristics	for	validating	input	are	roughly	as	follows:	
	
Heuristic:	Perform	simple	syntactic	edits	in	browser	code.	
	
Heuristic:	 On	 the	 server	 side,	 don’t	 universally	 trust	 browser-validated	 edits.	 Reapply	 validation	 checks	
when	receiving	requests	from	any	untrusted	source.	
	
Heuristic:	Use	framework-specific	validation	classes	only	to	perform	simple	syntactic	checks	such	as	correct	
data	type,	range	of	values,	etc.	
	
Heuristic:	Use	domain	 layer	validation	and	constraint	enforcement	patterns	 to	validate	all	other	semantic	
constraints	and	cross-attribute	validations.	
	
Heuristic:	Value	consistency	over	cleverness	when	performing	validations.		
	
I	 also	make	 the	 further	 distinction	 between	 descriptive,	 operational	 state,	 and	 life-cycle	 state	 attributes,	

based	on	concepts	 found	 in	Streamlined	Object	Modeling	 [Nico].	Some	domain	entities	go	 through	a	one-way	
lifecycle,	 from	 initial	 to	 a	 final	 state.	 The	 current	 values	 of	 any	 of	 their	 life-cycle	 attributes	 determine	
permissible	state	transitions.	In	a	traditional	architecture,	the	current	state	of	a	domain	entity	is	retrieved	from	
a	database	via	an	appropriate	query.	 In	an	event-sourced	architecture	the	current	state	of	a	domain	entity	 is	
synthesized	by	 replaying	all	 of	 its	 events	 (if	 this	 is	 expensive	 to	do,	 the	 state	may	be	 cached).	 Some	entities	
switch	 between	 different	 states,	 which	 are	 represented	 either	 directly	 in	 a	 state	 attribute	 or	 synthesized	
through	determining	current	values	of	its	operational	attributes.	The	state	such	an	entity	is	in	determines	how	
it	behaves.		

In	 his	 blog,	 Daniel	 uses	 different	 words	 to	 describe	 different	 kinds	 of	 data	 validations.	 He	 speaks	 of	
“superficial”	 and	 “domain”	 validations.	 Are	 these	 the	 same	 as	 my	 “simple,	 syntactic”	 and	 “semantic	
constraints”?	Daniel	characterizes	“superficial”	validations	as	those	constraints	on	input	values	that	must	hold	
true,	regardless	of	the	state	of	the	domain	and	gives	this	heuristic:	

	
Heuristic:	Perform	superficial	validations	before	issuing	a	command,	ideally	on	the	client	side	as	well	as	the	
server	side.	
	
He	also	characterizes	some	validations	as	being	“superficial	but	requiring	the	lookup	of	other	information”	

and	advises:	
	
Heuristic:	Perform	superficial	validations	requiring	lookup	in	the	service	before	issuing	a	command.	
	
Finally,	he	speaks	of	“domain	validations”	where	the	validity	of	a	command	is	dependent	on	the	state	of	the	

model	(or	I	might	restate,	the	current	state	of	the	domain)	and	recommends	they	be	validated	in	the	domain	
object:	

	
	

Traces, tracks, trails, and paths: An Exploration of How We Approach Design	Page	-	19	

	
Heuristic:	Perform	domain	validations	in	the	domain	objects.	
	
It	seems	clear	that	I	must	do	some	mapping	of	his	concepts	to	mine	in	order	to	make	sense	of	both	sets	of	

heuristics.	 Alternatively,	 I	 could	 let	 his	 heuristics	 rattle	 around	 in	my	 brain	without	making	 any	 attempt	 to	
integrate	them.	But	that	might	lead	to	“parroting”	those	new	heuristics	without	really	understanding	how	and	
where	to	apply	them.	

When	is	it	worth	the	effort	to	translate	heuristics	from	one	language	of	design	thought	to	another	and	then	
reconcile	them?	I	suspect	that	this	question	isn’t	asked	often.	When	faced	with	a	new	design	challenge	and	new	
techniques,	 we	 have	 to	 absorb	 them	 the	 best	 we	 can	 or	 we	 won’t	 be	 able	 to	 jump	 into	 that	 new	 way	 of	
designing.	When	a	design	approach	is	so	radically	different	from	what	we	know,	it’s	easier	to	absorb	new	and	
different	terminology.		

But	when	concepts	overlap	that	it	takes	more	effort.	
There	 seems	 to	 be	 an	 overlap	 between	 what	 I	 describe	 as	 syntactic	 validations	 and	 what	 Daniel	 calls	

superficial	validations.	But	“superficial	but	requiring	lookup	of	other	information”	doesn’t	directly	map	to	any	
concept	I	know	of.	I	can	conjecture	what	it	might	mean.	“Superficial	but	requiring	lookup	of	other	information”	
could	roughly	correspond	to	my	cross-attribute	constraints	(where	the	knowledge	of	what	to	look	up	seems	to	
be	located	closer	to	domain	logic,	as	in	a	domain	service).	And	his	“domain	validations”	seem	to	overlap	with	
operational	and	life	cycle	state	attributes	as	well	as	other	cross-domain	attribute	checks	that	don’t	require	any	
“lookup”.		

This	mapping	isn’t	perfect.	But	it	will	suffice.	My	heuristics	are	at	a	slightly	different	level	than	Daniel’s.	For	
example,	 I	 have	 a	 heuristic	 for	 when	 to	 use	 frameworks	 for	 simple	 validations.	 I	 also	 have	 a	 heuristic	 for	
generally	approaching	the	design	(value	consistency	over	cleverness).	After	performing	this	mental	exercise,	I	
think	that	I	understand	his	heuristics	well	enough	to	integrate	them	with	my	own.	

In	retrospect,	this	wasn’t	that	hard.	
But	it	took	some	effort.	

7. DEALING	WITH	UNCERTAINTY,	CONFLICTING	HEURISTICS,	AND	DETAILS	

I	suspect	we	need	to	let	go	of	some	of	our	design	certainty	around	our	own	heuristics	before	we	can	truly	learn	
from	others.	When	we	are	so	certain	we	risk	painting	ourselves	into	a	corner	when	there	are	better	trails	we	
might	have	explored	 if	we	hadn’t	been	so	certain.	Yet	 it’s	not	always	wise	 to	experiment.	Sometimes	we	are	
better	off	keeping	to	that	well-trodden	design	trail.	

Most	 of	 us,	 most	 of	 the	 time	 don’t	 start	 designing	 every	 day	 from	 scratch.	 There	 are	 usually	 many	
constraints	already	in	place.	 In	this	situation,	our	task	 is	mostly	that	of	refining	some	design	aspect	of	a	pre-
existing	 implementation.	 So	we	 jump	 in,	 and	 get	 right	 to	work,	with	more	or	 less	 certainty	 based	on	where	
we’ve	been,	what	we	know	about	the	existing	design,	and	what	the	next	task	is	ahead	of	us.	We	may	not	even	
know	what	trail	we	are	on,	just	that	we	need	to	keep	moving	forward.	

Even	so,	we	still	make	many	design	decisions.	And	some	of	those	decisions	will	have	far	reaching	impact.	So	
as	we	decide,	we	should	be	aware	that	multiple	heuristics,	are	always	in	competition	with	each	other.	Should	
we	 leave	 that	working	 code	alone	or	 refactor	 it	 (not	knowing	where	 it	will	 lead	–	but	hopefully	 to	a	 clearer	
design)?	Should	we	apply	 the	heuristic,	 “only	refactor	when	you	are	adding	a	new	feature”	or	stop	when	we	
notice	 the	 code	growing	 crufty	 and	poke	 at	 its	design	 (XP	 calls	 this	 a	design	 spike)?	 If	we	don’t,	we	may	be	
working	at	refining	a	shaky	design	that	eventually	drags	us	down.	This	is	how	technical	debt	grows.	

You	can	always	 find	a	bit	of	 folk	wisdom	to	support	what	you	want	 to	do;	and	another	equally	pithy	one	
advising	 you	 to	 do	 the	 exact	 opposite.	 For	 example,	 see	 Proverbs	 that	 Contradict	 Each	 Other	 [Barb].	 Our	
challenge	as	designers	is	to	sort	through	these	competing	heuristics	and	make	a	coherent	design.	

Michael	Keeling	and	 Joe	Runde	recently	 reported	on	 their	experiences	 instilling	 the	practice	of	 recording	
architecture	 decisions	 into	 their	 team	 [KR].	 Initially,	Michael	 hoped	 that	 by	 simply	 recording	 decisions,	 this	
would	lead	to	more	clarity	about	their	existing	designs	and	improve	overall	system	quality.	

When	designers	 record	 their	decisions,	 they	 lay	down	a	 track	 for	others	 to	 follow	and	 to	 retrospectively	
learn	from.	Each	decision	is	“sign”	along	a	unique	design	journey.	Although	initially	it	might	be	hard	to	sort	out	
what	decisions	are	worthy	to	record	and	to	get	others	to	actually	write	them,	eventually	there	is	a	payoff.		

	
	

Traces, tracks, trails, and paths: An Exploration of How We Approach Design	Page	-	20	

If	I	accept	that	software	design	is	always	filled	with	a	degree	of	uncertainty,	any	mark	or	track	I	lay	down	to	
show	where	I’ve	been	(even	better	if	I	include	what	I	was	thinking	when	I	made	a	design	choice)	helps	me	and	
others	 around	 me	 support	 our	 design’s	 evolution.	 At	 the	 very	 least,	 decisions	 over	 time	 create	 “sign”	 that	
others	can	trace	backwards	to	better	understand	why	the	design	currently	is	the	way	it	is.		

And	I	suspect	that	the	act	of	writing	down	design	decisions	might	lead	to	more	commonly	shared	heuristics,	
even	if	those	heuristics	aren’t	recorded.		

As	patterns	authors,	we	intentionally	create	waypoints—our	patterns	are	points	of	interests	along	a	design	
trail	we	hope	others	can	traverse.	But	we	shouldn’t	be	content	to	only	write	in	pattern	forms.	Patterns	convey	
critical	 information	 so	 that	 others	 on	 similar	 journeys	 can	 learn	 about	 our	 design	 thinking.	 But	we	 have	 an	
opportunity	to	offer	our	fellow	designers	much	more.	

What	 if	we	were	 to	 tell	more	of	our	personal	 story	as	designers	and	pattern	makers?	We	might	describe	
what	 territory	we’ve	passed	through,	what	systems	we’ve	designed	or	seen,	and	under	what	conditions	they	
were	 designed.	 We	 might	 share	 how	 we	 discovered	 our	 software	 patterns	 and	 enumerate	 other	 potential	
waypoints	that	we	spotted	or	were	aware	of	but	didn’t	include	(and	explain	why).	We	might	share	where	we’d	
like	to	travel—other	design	contexts	that	we	are	curious	about.	Or	places	where	we	are	cautious	or	reluctant	to	
recommend	using	our	patterns.	We	could	experiment	with	recording	other	heuristics	that	fill	in	gaps	between,	
conflict	 with,	 augment,	 and	 mesh	 with	 our	 patterns.	 We	 might	 share	 how	 confidant	 we	 were	 about	 our	
patterns’	utility	or	our	perception	of	their	relative	value	and	how	our	perceptions	have	changed	over	time.	Or	
we	might	be	so	bold	as	to	rate	our	pattern	trails	with	the	recommended	design	experience	required	to	traverse	
them	successfully.	While	all	this	stuff	is	“outside”	our	patterns,	it	is	important	for	other	designers	to	know.		

And	yet,	patterns	are	just	a	small	part	of	a	much	larger	body	of	design	know	how.	Heuristics,	like	patterns,	
can	be	at	various	levels.	Some	are	small,	simple	acts.	Others	are	bigger	steps,	taken	at	the	beginning	of	a	design	
journey.	There	are	so	many	design	heuristics.	We	pattern	authors	can’t	hope	to	mine,	organize,	or	write	about	
them	all.	Nor	should	that	be	our	goal.	

Each	designer	has	a	wealth	of	heuristics	she	has	internalized	yet	may	have	difficulty	explaining	to	others.	
But	 something	 magical	 happens	 when	 you	 formulate	 a	 heuristic	 in	 your	 own	 words	 and	 share	 it	 with	

another.	It	is	in	the	telling	to	another	that	I	clarify	my	thoughts.	And	when	I	am	able	to	patiently	answer	their	
questions,	I	gain	even	deeper	insight.	

If	I	take	the	extra	effort	to	write	down	a	heuristic,	that	act	of	creating	a	personal	memento	brings	me	even	
more	clarity.	And	when	I’ve	shared	it,	and	gotten	feedback	as	to	whether	they	understand	and	appreciate	my	
heuristic	(at	least	a	little),	then	I	have	something	I	can	potentially	share	with	others	separated	from	me	by	time	
or	space	or	distance.	

This	progression	from	doing	to	explaining	to	recording	to	effectively	communicating	can	be	difficult.	Not	all	
heuristics	are	significant	enough	to	warrant	a	lot	of	time	or	energy	to	polish.	But	those	that	seem	important	to	
you	 are	worth	 sharing.	 And	 in	 conversation	with	 another,	 you	 just	might	 find	 that	what	 you	 thought	was	 a	
simple	 and	 obvious	 seems	profound	 to	 someone	new	 to	 your	well-trodden	design	 trail.	 And	 if	 you’re	 lucky,	
they	might	even	share	an	observation	that	adjusts	your	thinking.	As	long	as	we	keep	learning	from	each	other,	
design	will	continue	to	be	fun.	And	equally	important,	we	designers	will	continue	to	evolve	our	state-of-the-art.	

8. ACKNOWLEDMENTS	

I’d	like	to	thank	my	shepherds,	Steven	Berzcuk,	who	kept	at	me	to	get	to	the	point	and	Kyle	Brown	who	insisted	
that	I	draw	some	conclusions.	Also,	thanks	to	Richard	Gabriel	who	advised	me	on	my	first	essay	on	heuristics	
[Wirf17a]	 and	 continues	 to	 critique	my	writing	 and	 encourage	me	 to	write	more	 about	 design.	 I	 appreciate	
your	 thoughtful	 observations.	 I’d	 also	 like	 to	 thank	 the	members	 of	 my	 PLoP	 writers’	 workshop	 group	 for	
giving	me	their	time	and	useful	commentary.	Thanks	also	to	Mathias	Verraes	for	inviting	me	to	a	conversation	
where	we	 had	 fun	 sharing	 your	 heuristics.	 Energized	 by	 that	 experience	 I	 hope	 to	 continue	 distilling	more	
design	heuristics	to	gain	further	insights	into	the	nature	of	design.		
	

	
 	

	
	

Traces, tracks, trails, and paths: An Exploration of How We Approach Design	Page	-	21	

REFERENCES	
[AKSHSI]	Akado,	Y.,	Kogure,	S.,	Sasabe,	A.,	Hong,	J.,	Saruwatar,	K.,	Iba,	T.	“Five	patterns	for	designing	pattern	mining	workshops,”	EuroPLoP	
2015,	Proceedings	of	the	20th	European	Conference	on	Pattern	Languages	of	Programs.		
[Barb]	Barber,	M.	,	blogpost	Proverbs	that	Contradict	Each	Other,	https://www.psychologytoday.com/us/blog/the-human-
beast/201202/proverbs-contradict-each-other	,	2012.	
[BC]	Beck,	K.,	Cunningham,	W.,	“A	Laboratory	for	Teaching	Object-Oriented	Thinking,”	OOPSLA	’89	Conference	Proceedings,	ACM	SIGPLAN	
notices,	vol	24,	issue	10.	
[Bran]	Brandolini,	A.,	Introducing	Eventstorming,	LeanPub.	
[Daha]	Dahan,	Udi.	blog	post,	“Clarified	CQRS,”	http://udidahan.com/2009/12/09/clarified-cqrs/	
[Dem]	Demeyer,	S.,	Ducasse,	S.,	Nierstrasz,	O.	Object-oriented	Reengineering	Patterns,	Morgan	Kaufman,	2003.	
[Evan]	Evans,	E.	Domain-Driven	Design:	Tackling	Complexity	in	the	Heart	of	Software,	Addison-Wesley,	2003.	
[Evan09]	Evans,	E.	presentation,	“What	I’ve	learned	about	DDD	since	the	book,”	QCon	2009.	
[Evan12]	Evans,	E.,video,	“What	I’ve	learned	about	DDD	since	the	book,”	DDD-NYC	Sig,	https://www.youtube.com/watch?v=lE6Hxz4yomA	
[Evan15]	Evans,	E.,	podcast,	“Episode	226:	Eric	Evans	on	Domain-Driven	Design	at	10	years,”	http://www.se-radio.net/2015/05/se-radio-
episode-226-eric-evans-on-domain-driven-design-at-10-years/	IEEE	Software	Engineering	Radio	
[Evan18]	Evans,	E.,	video	of	DDD	Europe	keynote,	Modeling	Time,	https://www.youtube.com/watch?v=T29WzvaPNc8	,	2018.	
[Emer]	Emerson,	R.,	Fretz	R.,	and	Shaw,	L.	Writing	Ethnographic	Fieldnotes,	2nd	Edition,	The	University	of	Chicago	Press,	2011.	
[GHJV]	Gamma,	E.,	Helm,	R.,	Johnson,	R.,	and	Vlissides,	J.	Design	Patterns:	Elements	of	Reusable	Object-Oriented	Software,	Addison-Wesley,	
1994.	
[Fowl]	Fowler,	M.	Analysis	Patterns:	Reusable	Object	Models,	Addison-Wesley,	1996.	
[Fowl5]	Fowler,	M.	Event	sourcing	blog,	https://martinfowler.com/eaaDev/EventSourcing.html	,	2005.	
[Grah]	Graham,	P.	Revenge	of	the	Nerds	in	Hackers	&	Painters:	Big	Ideas	from	the	Computer	Age,	O’Reilly	Media,	2010.	
[HLNSWY]	Hen-Tov,	A.,	Lorenz,	D.,	Nikolaev,	L.,	Schachter,	L,	Wirfs-Brock,	R.,	Yoder,	J.,	“Dynamic	Model	Evolution,”	PLoP	2010,	Proceedings	
of	the	17th	Conference	on	Pattern	Languages	of	Programs.	
[John]	Johnson,	R.,	video,	Twenty	Years	of	Design	Patterns,	SugarLoafPlop	2014,	https://www.youtube.com/watch?v=ALxQdnOdYXQ	
[Koen]	Koen,	B.V.	Discussion	of	the	method:	Conducting	the	Engineer’s	approach	to	problem	solving,	Oxford	University	Press,	2003.	
[KR]	Keeling,	M.,	Runde,	J.	“Share	the	Load:	Distribute	Design	Authority	with	Architecture	Decision	Records,”	Agile	2018	Experience	report,	
https://www.agilealliance.org/resources/experience-reports/distribute-design-authority-with-architecture-decision-records/	
[MiTu]	Millett,	S.,	Tune,	N.	Patterns,	Principles,	and	Practices	of	Domain	Driven	Design.	Wrix,	2015.	
[Moor]	Moor,	R.	On	trails:	An	Exploration,	Simon	&	Schuster	Paperbacks,	2016.		
[Nico]	Nicola,	J.,	Mayfield,	M.,	Abney,	M.	Streamlined	Object	Modeling:	Patterns,	Rules,	and	Implementation.	Prentice	Hall,	2001	
[Over]	Overeem,	M.	video	of	Event	Sourcing	after	Launch,	DDD	Europe	talk,	https://www.youtube.com/watch?v=JzWJI8kW2kc	,	2018.	
[Rich]	Pattern:	Event	Sourcing,	https://microservices.io/patterns/data/event-sourcing.html	
[Rich18]	Richardson,	C.,	Microservices	Patterns:	With	Examples	in	Java,	Manning,	2018.	
[Whit]	Whitaker,	D.,	blog	post,	http://danielwhittaker.me/2016/04/20/how-to-validate-commands-in-a-cqrs-application/	
[WWW]	Wirfs-Brock,	R.,	Wilkerson,	B.,	and	Wiener,	L.	A.	Designing	Object-Oriented	Software.	Prentice	Hall,	1990.		
[WYW]	Weilicki,	L.,	Yoder,	J.,	Wirfs-Brock,	R.,	“Adaptive	Object-Model	Builder,”	PLoP2009,	Proceedings	of	the	16th	Conference	on	Pattern	
Languages	of	Programs.	
[Youn]	Young,	Greg,	Versioning	in	an	Event-Sourced	System,	LeanPub,	2017.	
[Wirf02]	Wirfs-Brock,	R.	and	McKean	A.	Object	Design:	Roles,	Responsibilities,	and	Collaborations.	Addison-Wesley,	2002.	
[Wirf17a]	Wirfs-Brock,	R.,	“Are	Software	Patterns	Simply	a	Handy	Way	to	Package	Design	Heuristics?”,	PLoP	2017,	Proceedings	of	the	23rd	
Conference	on	Pattern	Languages	of	Programs.	
[Wirf17b]	Wirfs-Brock,	R.	keynote	Cultivating	Your	Personal	Design	Heuristics,	Explore	DDD	2017,	
https://www.youtube.com/watch?v=fWCt5KWfTuo&t=8s	
	
	
	
	

